Metrizability and completeness in normal Moore spaces
نویسندگان
چکیده
منابع مشابه
Completeness in Probabilistic Metric Spaces
The idea of probabilistic metric space was introduced by Menger and he showed that probabilistic metric spaces are generalizations of metric spaces. Thus, in this paper, we prove some of the important features and theorems and conclusions that are found in metric spaces. At the beginning of this paper, the distance distribution functions are proposed. These functions are essential in defining p...
متن کاملSimultaneous Metrizability of Coarse Spaces
A metric space can be naturally endowed with both a topology and a coarse structure. We examine the converse to this. Given a topology and a coarse structure we give necessary and sufficient conditions for the existence of a metric giving rise to both of these. We conclude with an application to the construction of the coarse assembly map.
متن کاملON COMPACTNESS AND G-COMPLETENESS IN FUZZY METRIC SPACES
In [Fuzzy Sets and Systems 27 (1988) 385-389], M. Grabiec in- troduced a notion of completeness for fuzzy metric spaces (in the sense of Kramosil and Michalek) that successfully used to obtain a fuzzy version of Ba- nachs contraction principle. According to the classical case, one can expect that a compact fuzzy metric space be complete in Grabiecs sense. We show here that this is not the case,...
متن کاملTopology and Metrizability of Cone Metric Spaces
Abstract: Replacing the set of real numbers by an ordered Banach space in the definition of a metric, Guang and Xian [5] introduced the concept of a cone metric and obtained some fixed point Theorems for contractive mappings on cone metric spaces. It has been shown that every cone metric space is metrizable [2-4]. In this paper we review and simplify some results of [6] and as a consequence of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 1966
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.1966.17.381